Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 105.853
1.
Nat Commun ; 15(1): 3847, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719792

The development of reliable single-cell dispensers and substantial sensitivity improvement in mass spectrometry made proteomic profiling of individual cells achievable. Yet, there are no established methods for single-cell glycome analysis due to the inability to amplify glycans and sample losses associated with sample processing and glycan labeling. In this work, we present an integrated platform coupling online in-capillary sample processing with high-sensitivity label-free capillary electrophoresis-mass spectrometry for N-glycan profiling of single mammalian cells. Direct and unbiased quantitative characterization of single-cell surface N-glycomes are demonstrated for HeLa and U87 cells, with the detection of up to 100 N-glycans per single cell. Interestingly, N-glycome alterations are unequivocally detected at the single-cell level in HeLa and U87 cells stimulated with lipopolysaccharide. The developed workflow is also applied to the profiling of ng-level amounts (5-500 ng) of blood-derived protein, extracellular vesicle, and total plasma isolates, resulting in over 170, 220, and 370 quantitated N-glycans, respectively.


Electrophoresis, Capillary , Glycomics , Mass Spectrometry , Polysaccharides , Single-Cell Analysis , Humans , Electrophoresis, Capillary/methods , Polysaccharides/metabolism , Polysaccharides/blood , Single-Cell Analysis/methods , HeLa Cells , Mass Spectrometry/methods , Glycomics/methods , Proteomics/methods , Extracellular Vesicles/metabolism , Lipopolysaccharides , Blood Proteins/analysis , Blood Proteins/metabolism
2.
J Cell Mol Med ; 28(9): e18361, 2024 May.
Article En | MEDLINE | ID: mdl-38722283

Hypoxia and Ferroptosis are associated with the malignant behaviour of cervical cancer. Endothelial PAS domain-containing protein 1 (EPAS1) contributes to the progression of cervical cancer. EPAS1 plays important roles in hypoxia and ferroptosis. Using the GEO dataset, machine-learning algorithms were used to screen for hypoxia- and ferroptosis-related genes (HFRGs) in cervical cancer. EPAS1 was identified as the hub gene. qPCR and WB were used to investigate the expression of EPAS1 in normal and cervical cancer tissues. The proliferation, invasion and migration of EPAS1 cells in HeLa and SiHa cell lines were detected using CCK8, transwell and wound healing assays, respectively. Apoptosis was detected by flow cytometry. A dual-luciferase assay was used to analyse the MALAT1-miR-182-5P-EPAS1 mRNA axis and core promoter elements of the super-enhancer. EPAS1 was significantly overexpressed in cervical cancer tissues. EPAS1 could increase the proliferation, invasion, migration of HeLa and SiHa cells and reduce the apoptosis of HeLa and SiHa cell. According to the double-luciferase assay, EPAS1 expression was regulated by the MALAT1-Mir-182-5p-EPAS1 mRNA axis. EPAS1 is associated with super-enhancers. Double-luciferase assay showed that the core elements of the super-enhancer were E1 and E3. EPAS1, an HFRG, is significantly overexpressed in cervical cancer. EPAS1 promotes malignant behaviour of cervical cancer cells. EPAS1 expression is regulated by super-enhancers and the MALAT1-miR-182-5P- EPAS1 mRNA axis. EPAS1 may be a target for the diagnosis and treatment of cervical cancer.


Apoptosis , Basic Helix-Loop-Helix Transcription Factors , Cell Movement , Cell Proliferation , Ferroptosis , Gene Expression Regulation, Neoplastic , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Female , Ferroptosis/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Apoptosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , HeLa Cells , RNA, Long Noncoding/genetics , RNA, Competitive Endogenous
3.
Virulence ; 15(1): 2350893, 2024 Dec.
Article En | MEDLINE | ID: mdl-38725096

Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a zoonotic disease. Intracellular replication of C. burnetii requires the maturation of a phagolysosome-like compartment known as the replication permissive Coxiella-containing vacuole (CCV). Effector proteins secreted by the Dot/Icm secretion system are indispensable for maturation of a single large CCV by facilitating the fusion of promiscuous vesicles. However, the mechanisms of CCV maintenance and evasion of host cell clearance remain to be defined. Here, we show that C. burnetii secreted Coxiella vacuolar protein E (CvpE) contributes to CCV biogenesis by inducing lysosome-like vacuole (LLV) enlargement. LLV fission by tubulation and autolysosome degradation is impaired in CvpE-expressing cells. Subsequently, we found that CvpE suppresses lysosomal Ca2+ channel transient receptor potential channel mucolipin 1 (TRPML1) activity in an indirect manner, in which CvpE binds phosphatidylinositol 3-phosphate [PI(3)P] and perturbs PIKfyve activity in lysosomes. Finally, the agonist of TRPML1, ML-SA5, inhibits CCV biogenesis and C. burnetii replication. These results provide insight into the mechanisms of CCV maintenance by CvpE and suggest that the agonist of TRPML1 can be a novel potential treatment that does not rely on antibiotics for Q fever by enhancing Coxiella-containing vacuoles (CCVs) fission.


Bacterial Proteins , Coxiella burnetii , Lysosomes , Phosphatidylinositol 3-Kinases , Phosphatidylinositol Phosphates , Transient Receptor Potential Channels , Vacuoles , Coxiella burnetii/metabolism , Coxiella burnetii/growth & development , Coxiella burnetii/genetics , Vacuoles/microbiology , Vacuoles/metabolism , Lysosomes/metabolism , Lysosomes/microbiology , Phosphatidylinositol Phosphates/metabolism , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/genetics , Phosphatidylinositol 3-Kinases/metabolism , Animals , Q Fever/microbiology , HeLa Cells , Host-Pathogen Interactions
4.
Nat Commun ; 15(1): 3890, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719850

Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.


Bacterial Proteins , Septins , Shigella flexneri , Signal Transduction , Ubiquitin , Ubiquitination , Shigella flexneri/metabolism , Shigella flexneri/pathogenicity , Septins/metabolism , Septins/genetics , Humans , Ubiquitin/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Phosphorylation , Host-Pathogen Interactions , HeLa Cells , Cullin Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , HEK293 Cells , Dysentery, Bacillary/microbiology , Dysentery, Bacillary/metabolism
5.
BMC Infect Dis ; 24(1): 483, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730352

BACKGROUND: Monkeypox (Mpox) is an important human pathogen without etiological treatment. A viral-host interactome study may advance our understanding of molecular pathogenesis and lead to the discovery of suitable therapeutic targets. METHODS: GEO Expression datasets characterizing mRNA profile changes in different host responses to poxviruses were analyzed for shared pathway identification, and then, the Protein-protein interaction (PPI) maps were built. The viral gene expression datasets of Monkeypox virus (MPXV) and Vaccinia virus (VACV) were used to identify the significant viral genes and further investigated for their binding to the library of targeting molecules. RESULTS: Infection with MPXV interferes with various cellular pathways, including interleukin and MAPK signaling. While most host differentially expressed genes (DEGs) are predominantly downregulated upon infection, marked enrichments in histone modifiers and immune-related genes were observed. PPI analysis revealed a set of novel virus-specific protein interactions for the genes in the above functional clusters. The viral DEGs exhibited variable expression patterns in three studied cell types: primary human monocytes, primary human fibroblast, and HeLa, resulting in 118 commonly deregulated proteins. Poxvirus proteins C6R derived protein K7 and K7R of MPXV and VACV were prioritized as targets for potential therapeutic interventions based on their histone-regulating and immunosuppressive properties. In the computational docking and Molecular Dynamics (MD) experiments, these proteins were shown to bind the candidate small molecule S3I-201, which was further prioritized for lead development. RESULTS: MPXV circumvents cellular antiviral defenses by engaging histone modification and immune evasion strategies. C6R-derived protein K7 binding candidate molecule S3I-201 is a priority promising candidate for treating Mpox.


Host-Pathogen Interactions , Monkeypox virus , Vaccinia virus , Viral Proteins , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , Vaccinia virus/genetics , Vaccinia virus/metabolism , HeLa Cells , Monkeypox virus/genetics , Mpox (monkeypox)/virology , Protein Interaction Maps , Gene Expression Profiling , Molecular Docking Simulation , Poxviridae/genetics , Poxviridae/metabolism , Fibroblasts/virology , Fibroblasts/metabolism
6.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731825

Aminopyrazoles represent interesting structures in medicinal chemistry, and several derivatives showed biological activity in different therapeutic areas. Previously reported 5-aminopyrazolyl acylhydrazones and amides showed relevant antioxidant and anti-inflammatory activities. To further extend the structure-activity relationships in this class of derivatives, a novel series of pyrazolyl acylhydrazones and amides was designed and prepared through a divergent approach. The novel compounds shared the phenylamino pyrazole nucleus that was differently decorated at positions 1, 3, and 4. The antiproliferative, antiaggregating, and antioxidant properties of the obtained derivatives 10-22 were evaluated in in vitro assays. Derivative 11a showed relevant antitumor properties against selected tumor cell lines (namely, HeLa, MCF7, SKOV3, and SKMEL28) with micromolar IC50 values. In the platelet assay, selected pyrazoles showed higher antioxidant and ROS formation inhibition activity than the reference drugs acetylsalicylic acid and N-acetylcysteine. Furthermore, in vitro radical scavenging screening confirmed the good antioxidant properties of acylhydrazone molecules. Overall, the collected data allowed us to extend the structure-activity relationships of the previously reported compounds and confirmed the pharmaceutical attractiveness of this class of aminopyrazole derivatives.


Amides , Antineoplastic Agents , Antioxidants , Cell Proliferation , Hydrazones , Pyrazoles , Humans , Pyrazoles/chemistry , Pyrazoles/pharmacology , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Amides/chemistry , Amides/pharmacology , Cell Line, Tumor , Reactive Oxygen Species/metabolism , MCF-7 Cells , HeLa Cells
7.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731874

The mitochondrial protein IF1 is upregulated in many tumors and acts as a pro-oncogenic protein through its interaction with the ATP synthase and the inhibition of apoptosis. We have recently characterized the molecular nature of the IF1-Oligomycin Sensitivity Conferring Protein (OSCP) subunit interaction; however, it remains to be determined whether this interaction could be targeted for novel anti-cancer therapeutic intervention. We generated mitochondria-targeting peptides to displace IF1 from the OSCP interaction. The use of one selective peptide led to displacement of the inhibitor IF1 from ATP synthase, as shown by immunoprecipitation. NMR spectroscopy analysis, aimed at clarifying whether these peptides were able to directly bind to the OSCP protein, identified a second peptide which showed affinity for the N-terminal region of this subunit overlapping the IF1 binding region. In situ treatment with the membrane-permeable derivatives of these peptides in HeLa cells, that are silenced for the IF1 inhibitor protein, showed significant inhibition in mitochondrial permeability transition and no effects on mitochondrial respiration. These peptides mimic the effects of the IF1 inhibitor protein in cancer HeLa cells and confirm that the IF1-OSCP interaction inhibits apoptosis. A third peptide was identified which counteracts the anti-apoptotic role of IF1, showing that OSCP is a promising target for anti-cancer therapies.


Mitochondrial Proton-Translocating ATPases , Peptides , Humans , HeLa Cells , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proton-Translocating ATPases/antagonists & inhibitors , Peptides/pharmacology , Peptides/chemistry , Peptides/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Apoptosis/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , ATPase Inhibitory Protein , Protein Binding , Mitochondrial Membrane Transport Proteins/metabolism
8.
Mol Biol Rep ; 51(1): 654, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735002

BACKGROUND: Cervical cancer is a common gynecologic malignant tumor, but the critical factors affecting cervical cancer progression are still not well demonstrated. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has been widely recognized as an anti-inflammatory factor to regulate macrophage polarization. In this study, the effect and mechanism of MANF on cervical cancer were preliminarily explored. METHODS AND RESULTS: Kaplan-Meier curve was used to show the overall survival time of the involved cervical cancer patients with high and low MANF expression in cervical cancer tissues. MANF was highly expressed in peritumoral tissues of cervical carcinoma by using immunohistochemistry and western blot. MANF mRNA level was detected by using qRT-PCR. Dual-labeled immunofluorescence showed MANF was mainly expressed in macrophages of cervical peritumoral tissues. Moreover, MANF-silenced macrophages promoted HeLa and SiHa cells survival, migration, invasion and EMT via NF-κB signaling activation. The results of tumor formation in nude mice indicated MANF-silenced macrophages promoted cervical tumor formation in vivo. CONCLUSION: Our study reveals an inhibitory role of MANF in cervical cancer progression, indicating MANF as a new and valuable therapeutic target for cervical cancer treatment.


Disease Progression , Macrophages , Mice, Nude , Nerve Growth Factors , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Female , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Animals , Macrophages/metabolism , Mice , Cell Movement/genetics , NF-kappa B/metabolism , Cell Line, Tumor , Signal Transduction , Phenotype , HeLa Cells , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation , Middle Aged
9.
Nat Commun ; 15(1): 3793, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714822

Across the cell cycle, mitochondrial dynamics are regulated by a cycling wave of actin polymerization/depolymerization. In metaphase, this wave induces actin comet tails on mitochondria that propel these organelles to drive spatial mixing, resulting in their equitable inheritance by daughter cells. In contrast, during interphase the cycling actin wave promotes localized mitochondrial fission. Here, we identify the F-actin nucleator/elongator FMNL1 as a positive regulator of the wave. FMNL1-depleted cells exhibit decreased mitochondrial polarization, decreased mitochondrial oxygen consumption, and increased production of reactive oxygen species. Accompanying these changes is a loss of hetero-fusion of wave-fragmented mitochondria. Thus, we propose that the interphase actin wave maintains mitochondrial homeostasis by promoting mitochondrial content mixing. Finally, we investigate the mechanistic basis for the observation that the wave drives mitochondrial motility in metaphase but mitochondrial fission in interphase. Our data indicate that when the force of actin polymerization is resisted by mitochondrial tethering to microtubules, as in interphase, fission results.


Actins , Homeostasis , Interphase , Mitochondria , Mitochondrial Dynamics , Actins/metabolism , Mitochondria/metabolism , Humans , Formins/metabolism , Reactive Oxygen Species/metabolism , HeLa Cells , Microtubules/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Animals
10.
J Nanobiotechnology ; 22(1): 222, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698420

BACKGROUND: Aging is a very complex physiological phenomenon, and sEVs are involved in the regulation of this mechanism. Serum samples from healthy individuals under 30 and over 60 years of age were collected to analyze differences in sEVs proteomics. RESULTS: Based on PBA analysis, we found that sEVs from the serum of elderly individuals highly express TACSTD2 and identified a subpopulation marked by TACSTD2. Using ELISA, we verified the upregulation of TACSTD2 in serum from elderly human and aged mouse. In addition, we discovered that TACSTD2 was significantly increased in samples from tumor patients and had better diagnostic value than CEA. Specifically, 9 of the 13 tumor groups exhibited elevated TACSTD2, particularly for cervical cancer, colon cancer, esophageal carcinoma, liver cancer and thyroid carcinoma. Moreover, we found that serum sEVs from the elderly (especially those with high TACSTD2 levels) promoted tumor cell (SW480, HuCCT1 and HeLa) proliferation and migration. CONCLUSION: TACSTD2 was upregulated in the serum of elderly individuals and patients with tumors, and could serve as a dual biomarker for aging and tumors.


Antigens, Neoplasm , Biomarkers, Tumor , Cell Adhesion Molecules , Neoplasms , Humans , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/blood , Antigens, Neoplasm/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Animals , Mice , Female , Aged , Middle Aged , Neoplasms/blood , Neoplasms/genetics , Neoplasms/metabolism , Male , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Cell Line, Tumor , Adult , Cell Proliferation , Cell Movement , Aging/genetics , Proteomics/methods , HeLa Cells , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Up-Regulation
11.
Commun Biol ; 7(1): 532, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710927

Golgin tethers are known to mediate vesicular transport in the secretory pathway, whereas it is relatively unknown whether they may mediate cellular stress response within the cell. Here, we describe a cellular stress response during heat shock stress via SUMOylation of a Golgin tether, Golgin45. We found that Golgin45 is a SUMOylated Golgin via SUMO1 under steady state condition. Upon heat shock stress, the Golgin enters the nucleus by interacting with Importin-ß2 and gets further modified by SUMO3. Importantly, SUMOylated Golgin45 appears to interact with PML and SUMO-deficient Golgin45 mutant functions as a dominant negative for PML-NB formation during heat shock stress, suppressing transcription of lipid metabolism genes. These results indicate that Golgin45 may play a role in heat stress response by transcriptional regulation of lipid metabolism genes in SUMOylation-dependent fashion.


Heat-Shock Response , Lipid Metabolism , Sumoylation , Ubiquitins , Humans , Lipid Metabolism/genetics , Heat-Shock Response/genetics , Gene Expression Regulation , Promyelocytic Leukemia Protein/metabolism , Promyelocytic Leukemia Protein/genetics , HeLa Cells , SUMO-1 Protein/metabolism , SUMO-1 Protein/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , HEK293 Cells , Transcription, Genetic , beta Karyopherins/metabolism , beta Karyopherins/genetics
12.
Proc Natl Acad Sci U S A ; 121(21): e2322974121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38743621

SRSF1 is the founding member of the SR protein family. It is required-interchangeably with other SR proteins-for pre-mRNA splicing in vitro, and it regulates various alternative splicing events. Dysregulation of SRSF1 expression contributes to cancer and other pathologies. Here, we characterized SRSF1's interactome using proximity labeling and mass spectrometry. This approach yielded 190 proteins enriched in the SRSF1 samples, independently of the N- or C-terminal location of the biotin-labeling domain. The detected proteins reflect established functions of SRSF1 in pre-mRNA splicing and reveal additional connections to spliceosome proteins, in addition to other recently identified functions. We validated a robust interaction with the spliceosomal RNA helicase DDX23/PRP28 using bimolecular fluorescence complementation and in vitro binding assays. The interaction is mediated by the N-terminal RS-like domain of DDX23 and both RRM1 and the RS domain of SRSF1. During pre-mRNA splicing, DDX23's ATPase activity is essential for the pre-B to B spliceosome complex transition and for release of U1 snRNP from the 5' splice site. We show that the RS-like region of DDX23's N-terminal domain is important for spliceosome incorporation, while larger deletions in this domain alter subnuclear localization. We discuss how the identified interaction of DDX23 with SRSF1 and other SR proteins may be involved in the regulation of these processes.


DEAD-box RNA Helicases , RNA Splicing , Serine-Arginine Splicing Factors , Spliceosomes , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Humans , Spliceosomes/metabolism , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , RNA Precursors/metabolism , RNA Precursors/genetics , Protein Binding , HeLa Cells
13.
J Am Chem Soc ; 146(19): 13163-13175, 2024 May 15.
Article En | MEDLINE | ID: mdl-38698548

A pretargeted strategy that decouples targeting vectors from radionuclides has shown promise for nuclear imaging and/or therapy in vivo. However, the current pretargeted approach relies on the use of antibodies or nanoparticles as the targeting vectors, which may be compromised by poor tissue penetration and limited accumulation of targeting vectors in the tumor tissues. Herein, we present an orthogonal dual-pretargeted approach by combining stimuli-triggered in situ self-assembly strategy with fast inverse electron demand Diels-Alder (IEDDA) reaction and strong biotin-streptavidin (SA) interaction for near-infrared fluorescence (NIR FL) and magnetic resonance (MR) imaging of tumors. This approach uses a small-molecule probe (P-Cy-TCO&Bio) containing both biotin and trans-cyclooctene (TCO) as a tumor-targeting vector. P-Cy-TCO&Bio can efficiently penetrate subcutaneous HeLa tumors through biotin-assisted targeted delivery and undergo in situ self-assembly to form biotinylated TCO-bearing nanoparticles (Cy-TCO&Bio NPs) on tumor cell membranes. Cy-TCO&Bio NPs exhibited an "off-on" NIR FL and retained in the tumors, offering a high density of TCO and biotin groups for the concurrent capture of Gd-chelate-labeled tetrazine (Tz-Gd) and IR780-labeled SA (SA-780) via the orthogonal IEDDA reaction and SA-biotin interaction. Moreover, Cy-TCO&Bio NPs offered multiple-valent binding modes toward SA, which additionally regulated the cross-linking of Cy-Gd&Bio NPs into microparticles (Cy-Gd&Bio/SA MPs). This process could significantly (1) increase r1 relaxivity and (2) enhance the accumulation of Tz-Gd and SA-780 in the tumors, resulting in strong NIR FL, bright MR contrast, and an extended time window for the clear and precise imaging of HeLa tumors.


Biotin , Cyclooctanes , Magnetic Resonance Imaging , Nanoparticles , Cyclooctanes/chemistry , Humans , Nanoparticles/chemistry , Magnetic Resonance Imaging/methods , HeLa Cells , Biotin/chemistry , Animals , Optical Imaging , Biotinylation , Mice , Streptavidin/chemistry , Cycloaddition Reaction , Fluorescence
14.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38722278

Aberrant proteins located in the endoplasmic reticulum (ER) undergo rapid ubiquitination by multiple ubiquitin (Ub) E3 ligases and are retrotranslocated to the cytosol as part of the ER-associated degradation (ERAD). Despite several ERAD branches involving different Ub E3 ligases, the molecular machinery responsible for these ERAD branches in mammalian cells remains not fully understood. Through a series of multiplex knockdown/knockout experiments with real-time kinetic measurements, we demonstrate that HERC3 operates independently of the ER-embedded ubiquitin ligases RNF5 and RNF185 (RNF5/185) to mediate the retrotranslocation and ERAD of misfolded CFTR. While RNF5/185 participates in the ERAD process of both misfolded ABCB1 and CFTR, HERC3 uniquely promotes CFTR ERAD. In vitro assay revealed that HERC3 directly interacts with the exposed membrane-spanning domains (MSDs) of CFTR but not with the MSDs embedded in liposomes. Therefore, HERC3 could play a role in the quality control of MSDs in the cytoplasm and might be crucial for the ERAD pathway of select membrane proteins.


Endoplasmic Reticulum-Associated Degradation , Membrane Proteins , Ubiquitin-Protein Ligases , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , DNA-Binding Proteins , Endoplasmic Reticulum/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , HeLa Cells , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Binding , Protein Domains , Protein Folding , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
15.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38728007

Activation of PINK1 and Parkin in response to mitochondrial damage initiates a response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding negative regulator of autophagy. The structure of the Rubicon:RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed, in vitro phosphorylation of RAB7A by TBK1 abrogates Rubicon:RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A-positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.


Mitophagy , Protein Serine-Threonine Kinases , Ubiquitin-Protein Ligases , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Mitophagy/genetics , Humans , Phosphorylation , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , HeLa Cells , Protein Binding , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Mitochondria/metabolism , Mitochondria/genetics , HEK293 Cells
16.
Nat Commun ; 15(1): 4023, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740816

Abscission is the final stage of cytokinesis, which cleaves the intercellular bridge (ICB) connecting two daughter cells. Abscission requires tight control of the recruitment and polymerization of the Endosomal Protein Complex Required for Transport-III (ESCRT-III) components. We explore the role of post-translational modifications in regulating ESCRT dynamics. We discover that SMYD2 methylates the lysine 6 residue of human CHMP2B, a key ESCRT-III component, at the ICB, impacting the dynamic relocation of CHMP2B to sites of abscission. SMYD2 loss-of-function (genetically or pharmacologically) causes CHMP2B hypomethylation, delayed CHMP2B polymerization and delayed abscission. This is phenocopied by CHMP2B lysine 6 mutants that cannot be methylated. Conversely, SMYD2 gain-of-function causes CHMP2B hypermethylation and accelerated abscission, specifically in cells undergoing cytokinetic challenges, thereby bypassing the abscission checkpoint. Additional experiments highlight the importance of CHMP2B methylation beyond cytokinesis, namely during ESCRT-III-mediated HIV-1 budding. We propose that lysine methylation signaling fine-tunes the ESCRT-III machinery to regulate the timing of cytokinetic abscission and other ESCRT-III dependent functions.


Cytokinesis , Endosomal Sorting Complexes Required for Transport , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Humans , Methylation , HeLa Cells , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , HIV-1/metabolism , HIV-1/genetics , HIV-1/physiology , Lysine/metabolism , Protein Processing, Post-Translational
17.
PLoS One ; 19(5): e0302936, 2024.
Article En | MEDLINE | ID: mdl-38713716

Long-term evolution (LTE) radiofrequency electromagnetic field (RF-EMF) is widely used in communication technologies. Thus, the influence of RF-EMF on biological systems is a major public concern and its physiological effects remain controversial. In our previous study, we showed that continuous exposure of various human cell types to 1.7 GHz LTE RF-EMF at a specific absorption rate (SAR) of 2 W/Kg for 72 h can induce cellular senescence. To understand the precise cellular effects of LTE RF-EMF, we elaborated the 1.7 GHz RF-EMF cell exposure system used in the previous study by replacing the RF signal generator and developing a software-based feedback system to improve the exposure power stability. This refinement of the 1.7 GHz LTE RF-EMF generator facilitated the automatic regulation of RF-EMF exposure, maintaining target power levels within a 3% range and a constant temperature even during the 72-h-exposure period. With the improved experimental setup, we examined the effect of continuous exposure to 1.7 GHz LTE RF-EMF at up to SAR of 8 W/Kg in human adipose tissue-derived stem cells (ASCs), Huh7, HeLa, and rat B103 cells. Surprisingly, the proliferation of all cell types, which displayed different growth rates, did not change significantly compared with that of the unexposed controls. Also, neither DNA damage nor cell cycle perturbation was observed in the 1.7 GHz LTE RF-EMF-exposed cells. However, when the thermal control system was turned off and the subsequent temperature increase induced by the RF-EMF was not controlled during continuous exposure to SAR of 8 W/Kg LTE RF-EMF, cellular proliferation increased by 35.2% at the maximum. These observations strongly suggest that the cellular effects attributed to 1.7 GHz LTE RF-EMF exposure are primarily due to the induced thermal changes rather than the RF-EMF exposure itself.


Cell Proliferation , Electromagnetic Fields , Radio Waves , Humans , Cell Proliferation/radiation effects , Rats , Animals , HeLa Cells , Temperature
18.
Mikrochim Acta ; 191(6): 302, 2024 05 06.
Article En | MEDLINE | ID: mdl-38709346

A sensitive and biocompatible N-rich probe for rapid visual uranium detection was constructed by grafting two trianiline groups to 2,6-bis(aminomethyl)pyridine. Possessing excellent aggregation-induced emission (AIE) property and the advantages to form multidentate chelate with U selectively, the probe has been applied successfully to visualize uranium in complex environmental water samples and living cells, demonstrating outstanding anti-interference ability against large equivalent of different ions over a wide effective pH range. A large linear range (1.0 × 10-7-9.0 × 10-7 mol/L) and low detection limit (72.6 nmol/L, 17.28 ppb) were achieved for the visual determination of uranium. The recognition mechanism, photophysical properties, analytical performance and cytotoxicity were systematically investigated, demonstrating high potential for fast risk assessment of uranium pollution in field and in vivo.


Fluorescent Dyes , Uranium , Uranium/analysis , Uranium/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , Humans , Limit of Detection , Biocompatible Materials/chemistry , HeLa Cells , Cell Survival/drug effects , Optical Imaging , Aniline Compounds/chemistry , Aniline Compounds/toxicity , Pyridines/chemistry
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 311-318, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710515

Objective To investigate the effects of mitochondrial transcription factor A (TFAM) on mitochondrial function, autophagy, proliferation, invasion, and migration in cervical cancer HeLa cells and osteosarcoma U2OS cells. Methods TFAM small-interfering RNA (si-TFAM) was transfected to HeLa and U2OS cells for downregulating TFAM expression. Mito-Tracker Red CMXRos staining combined with laser confocal microscopy was used to detect mitochondrial membrane potential (MMP). MitoSOXTM Red labeling was used to test mitochondrial reactive oxygen species (mtROS) levels. The expression of mitochondrial DNA (mtDNA) was detected by real-time quantitative PCR. Changes in the number of autophagosomes were detected by immunofluorescence cytochemistry. Western blot analysis was used to detect the expressions of TFAM, autophagy microtubule associated protein 1 light chain 3A/B (LC3A/B), autophagy associated protein 2A (ATG2A), ATG2B, ATG9A, zinc finger transcription factor Snail, matrix metalloproteinase 2 (MMP2) and MMP9. CCK-8 assay and plate clony formation assay were used to detect cell proliferation, while TranswellTM assay and scratch healing assay were used to detect changes in cell invasion and migration. Results The downregulation of TFAM expression resulted in a decrease in MMP and mtDNA copy number, but an increase in mtROS production. The protein content of LC3A/B decreased significantly compared to the control group and the number of autophagosomes in the cytoplasm decreased significantly. The expressions of ATG2B and ATG9A in the early stage of autophagy were significantly reduced. The expressions of Snail, MMP2 and MMP9 proteins in HeLa and U2OS cells were also decreased. The proliferation, invasion and migration ability of HeLa and U2OS cells were inhibited after being interfered with TFAM expression. Conclusion Downregulation of TFAM expression inhibits mitochondrial function, delays autophagy process and reduces the proliferation, invasion and migration ability of cervical cancer cells and osteosarcoma cells.


Autophagy , Cell Movement , Cell Proliferation , DNA-Binding Proteins , Mitochondrial Proteins , Neoplasm Invasiveness , Osteosarcoma , Transcription Factors , Uterine Cervical Neoplasms , Humans , Cell Movement/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Cell Proliferation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Autophagy/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Membrane Potential, Mitochondrial/genetics , Reactive Oxygen Species/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Mitochondria/metabolism , Mitochondria/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , HeLa Cells , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics
20.
Mol Biol Rep ; 51(1): 642, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727866

BACKGROUND: The mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein regulating mitochondrial metabolism and functions in lipid homeostasis and apoptosis. Experimental data on the interaction of MTCH2 with viral proteins in virus-infected cells are very limited. Here, the interaction of MTCH2 with PA subunit of influenza A virus RdRp and its effects on viral replication was investigated. METHODS: The human MTCH2 protein was identified as the influenza A virus PA-related cellular factor with the Y2H assay. The interaction between GST.MTCH2 and PA protein co-expressed in transfected HEK293 cells was evaluated by GST-pull down. The effect of MTCH2 on virus replication was determined by quantification of viral transcript and/or viral proteins in the cells transfected with MTCH2-encoding plasmid or MTCH2-siRNA. An interaction model of MTCH2 and PA was predicted with protein modeling/docking algorithms. RESULTS: It was observed that PA and GST.MTCH2 proteins expressed in HEK293 cells were co-precipitated by glutathione-agarose beads. The influenza A virus replication was stimulated in HeLa cells whose MTCH2 expression was suppressed with specific siRNA, whereas the increase of MTCH2 in transiently transfected HEK293 cells inhibited viral RdRp activity. The results of a Y2H assay and protein-protein docking analysis suggested that the amino terminal part of the viral PA (nPA) can bind to the cytoplasmic domain comprising amino acid residues 253 to 282 of the MTCH2. CONCLUSION: It is suggested that the host mitochondrial MTCH2 protein is probably involved in the interaction with the viral polymerase protein PA to cause negative regulatory effect on influenza A virus replication in infected cells.


Influenza A virus , Virus Replication , Humans , Virus Replication/genetics , HEK293 Cells , Influenza A virus/physiology , Influenza A virus/genetics , HeLa Cells , Down-Regulation , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Protein Binding , Mitochondria/metabolism , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics
...